Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1344070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440076

RESUMO

The lymphatic vasculature regulates lung homeostasis through drainage of fluid and trafficking of immune cells and plays a key role in the response to lung injury in several disease states. We have previously shown that lymphatic dysfunction occurs early in the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) and that this is associated with increased thrombin and fibrin clots in lung lymph. However, the direct effects of CS and thrombin on lymphatic endothelial cells (LECs) in COPD are not entirely clear. Studies of the blood vasculature have shown that COPD is associated with increased thrombin after CS exposure that causes endothelial dysfunction characterized by changes in the expression of coagulation factors and leukocyte adhesion proteins. Here, we determined whether similar changes occur in LECs. We used an in vitro cell culture system and treated human lung microvascular lymphatic endothelial cells with cigarette smoke extract (CSE) and/or thrombin. We found that CSE treatment led to decreased fibrinolytic activity in LECs, which was associated with increased expression of plasminogen activator inhibitor 1 (PAI-1). LECs treated with both CSE and thrombin together had a decreased expression of tissue factor pathway inhibitor (TFPI) and increased expression of adhesion molecules. RNA sequencing of lung LECs isolated from mice exposed to CS also showed upregulation of prothrombotic and inflammatory pathways at both acute and chronic exposure time points. Analysis of publicly available single-cell RNA sequencing of LECs as well as immunohistochemical staining of lung tissue from COPD patients supported these data and showed increased expression of inflammatory markers in LECs from COPD patients compared to those from controls. These studies suggest that in parallel with blood vessels, the lymphatic endothelium undergoes inflammatory changes associated with CS exposure and increased thrombin in COPD. Further research is needed to unravel the mechanisms by which these changes affect lymphatic function and drive tissue injury in COPD.

2.
Am J Transplant ; 24(2): 280-292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37619922

RESUMO

The presence of bronchus-associated lymphoid tissue (BALT) in donor lungs has been suggested to accelerate graft rejection after lung transplantation. Although chronic smoke exposure can induce BALT formation, the impact of donor cigarette use on alloimmune responses after lung transplantation is not well understood. Here, we show that smoking-induced BALT in mouse donor lungs contains Foxp3+ T cells and undergoes dynamic restructuring after transplantation, including recruitment of recipient-derived leukocytes to areas of pre-existing lymphoid follicles and replacement of graft-resident donor cells. Our findings from mouse and human lung transplant data support the notion that a donor's smoking history does not predispose to acute cellular rejection or prevent the establishment of allograft acceptance with comparable outcomes to nonsmoking donors. Thus, our work indicates that BALT in donor lungs is plastic in nature and may have important implications for modulating proinflammatory or tolerogenic immune responses following transplantation.


Assuntos
Transplante de Pulmão , Tecido Linfoide , Camundongos , Humanos , Animais , Transplante de Pulmão/efeitos adversos , Tolerância Imunológica , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Pulmão , Brônquios , Fumar
3.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961242

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease that is characterized by many clinical phenotypes. One such phenotype of COPD is defined by emphysema, pathogenic lung tertiary lymphoid organs (TLOs), and autoantibody production. We have previously shown that lymphatic dysfunction can cause lung TLO formation and lung injury in mice. We now sought to uncover whether underlying lymphatic dysfunction may be a driver of lung injury in cigarette smoke (CS)-induced COPD. We found that lung TLOs in mice with lymphatic dysfunction produce autoantibodies and are associated with a lymphatic endothelial cell subtype that expresses antigen presentation genes. Mice with underlying lymphatic dysfunction develop increased emphysema after CS exposure, with increased size and activation of TLOs. CS further increased autoantibody production in mice with lymphatic dysfunction. B-cell blockade prevented TLO formation and decreased lung injury after CS in mice with lymphatic dysfunction. Using tissue from human COPD patients, we also found evidence of a lymphatic gene signature that was specific to patients with emphysema and prominent TLOs compared to COPD patients without emphysema. Taken together, these data suggest that lymphatic dysfunction may underlie lung injury in a subset of COPD patients with an autoimmune emphysema phenotype.

4.
Front Med (Lausanne) ; 10: 1118583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999077

RESUMO

The lymphatic vasculature maintains tissue homeostasis via fluid drainage in the form of lymph and immune surveillance due to migration of leukocytes through the lymphatics to the draining lymph nodes. Lymphatic endothelial cells (LECs) form the lymphatic vessels and lymph node sinuses and are key players in shaping immune responses and tolerance. In the healthy lung, the vast majority of lymphatic vessels are found along the bronchovascular structures, in the interlobular septa, and in the subpleural space. Previous studies in both mice and humans have shown that the lymphatics are necessary for lung function from the neonatal period through adulthood. Furthermore, changes in the lymphatic vasculature are observed in nearly all respiratory diseases in which they have been analyzed. Recent work has pointed to a causative role for lymphatic dysfunction in the initiation and progression of lung disease, indicating that these vessels may be active players in pathologic processes in the lung. However, the mechanisms by which defects in lung lymphatic function are pathogenic are understudied, leaving many unanswered questions. A more comprehensive understanding of the mechanistic role of morphological, functional, and molecular changes in the lung lymphatic endothelium in respiratory diseases is a promising area of research that is likely to lead to novel therapeutic targets. In this review, we will discuss our current knowledge of the structure and function of the lung lymphatics and the role of these vessels in lung homeostasis and respiratory disease.

5.
Sci Rep ; 12(1): 5012, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322079

RESUMO

The lymphatic vasculature is critical for lung function, but defects in lymphatic function in the pathogenesis of lung disease is understudied. In mice, lymphatic dysfunction alone is sufficient to cause lung injury that resembles human emphysema. Whether lymphatic function is disrupted in cigarette smoke (CS)-induced emphysema is unknown. In this study, we investigated the effect of CS on lung lymphatic function. Analysis of human lung tissue revealed significant lung lymphatic thrombosis in patients with emphysema compared to control smokers that increased with disease severity. In a mouse model, CS exposure led to lung lymphatic thrombosis, decreased lymphatic drainage, and impaired leukocyte trafficking that all preceded the development of emphysema. Proteomic analysis demonstrated an increased abundance of coagulation factors in the lymph draining from the lungs of CS-exposed mice compared to control mice. In addition, in vitro assays demonstrated a direct effect of CS on lymphatic endothelial cell integrity. These data show that CS exposure results in lung lymphatic dysfunction and a shift in thoracic lymph towards a prothrombic state. Furthermore, our data suggest that lymphatic dysfunction is due to effects of CS on the lymphatic vasculature that precede emphysema. These studies demonstrate a novel component of CS-induced lung injury that occurs early in the pathogenesis of emphysema.


Assuntos
Enfisema , Lesão Pulmonar , Enfisema Pulmonar , Fumaça , Trombose , Poluição por Fumaça de Tabaco , Animais , Enfisema/patologia , Humanos , Pulmão/patologia , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Enfisema Pulmonar/patologia , Fumaça/efeitos adversos , Lesão por Inalação de Fumaça , Trombose/patologia , Poluição por Fumaça de Tabaco/efeitos adversos
6.
J Clin Invest ; 129(6): 2514-2526, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30946031

RESUMO

The lung is a specialized barrier organ that must tightly regulate interstitial fluid clearance and prevent infection in order to maintain effective gas exchange. Lymphatic vessels are important for these functions in other organs, but their roles in the lung have not been fully defined. In the present study, we addressed how the lymphatic vasculature participates in lung homeostasis. Studies using mice carrying a lymphatic reporter allele revealeded that, in contrast to other organs, lung lymphatic collecting vessels lack smooth muscle cells entirely, suggesting that forward lymph flow is highly dependent on movement and changes in pressure associated with respiration. Functional studies using CLEC2-deficient mice in which lymph flow is impaired due to loss of lympho-venous hemostasis or using inducible lung-specific ablation of lymphatic endothelial cells in a lung transplant model revealeded that loss of lymphatic function leads to an inflammatory state characterized by the formation of tertiary lymphoid organs (TLOs). In addition, impaired lymphatic flow in mice resulteds in hypoxia and features of lung injury that resemble emphysema. These findings reveal both a lung-specific mechanism of lymphatic physiology and a lung-specific consequence of lymphatic dysfunction that may contribute to chronic lung diseases that arise in association with TLO formation.


Assuntos
Células Endoteliais , Lectinas Tipo C/deficiência , Alvéolos Pulmonares , Enfisema Pulmonar , Estruturas Linfoides Terciárias , Animais , Células Endoteliais/imunologia , Células Endoteliais/patologia , Lectinas Tipo C/imunologia , Camundongos , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/lesões , Alvéolos Pulmonares/patologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia
7.
J Clin Invest ; 125(11): 3999-4001, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26524589

RESUMO

Lung allografts are prone to rejection, even though recipients undergo aggressive immunosuppressive therapy. Lymphatic vessels serve as conduits for immune cell trafficking and have been implicated in the mediation of allograft rejection. In this issue of the JCI, Cui et al. provide compelling evidence that lymphatic vessel formation improves lung allograft survival in a murine transplant model. Moreover, their data suggest a potential mechanism for the beneficial effects of lymphatics that does not involve immune cell or antigen transport. Together, the results of this study provide new insight into the role of lymphatic vessels in transplant tolerance.


Assuntos
Rejeição de Enxerto/terapia , Ácido Hialurônico/metabolismo , Transplante de Pulmão , Linfangiogênese , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Animais , Humanos , Masculino
8.
Genes Cancer ; 2(12): 1106-16, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22866202

RESUMO

The discovery that Notch, a key regulator of cell fate determination, is functional in the vasculature has greatly improved our understanding of differentiation and specialization of vessels. Notch signaling has been proven to be critical for arterial specification, sprouting angiogenesis, and vessel maturation. In newly forming vascular sprouts, Notch promotes the distinction between the leading "tip" endothelial cell and the growing "stalk" cell, the endothelial cells that eventually form a new capillary. Notch signaling has also been implicated in vessel stability by regulating vascular mural cell function. More recently, macrophages carrying an activated Notch have been implicated in shaping the course of new sprout formation. Tumor vessels abide by similar principles and use Notch signaling in similar ways. An exciting discovery, made by several researchers, shows that blocking Notch function in tumor vasculature provides a means by which to suppress tumor growth. The authors discuss the developmental and physiological role of Notch in the vasculature and apply this knowledge to an overview of how Notch targeting in the tumor environment can affect tumor angiogenesis and growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...